The PHENIX Event Builder – Overview

Major Functions

- Receive data from DCM's into sub-event buffers (SEB's).
- Switch fragments for given partition/crossing to single destination.
- Assemble events, run trigger algorithms in Assembly Trigger Processors (ATP's).
- Pass complete, trigger-selected events to ONCS.

The PHENIX Event Builder – Overview (Cont.)

Event-builder Components

- Sub-event buffers
 - Receives data from DCM's.
 - Determines destination(s) for received packet(s).
 - Provides framing for input to switch.
 - Sends data to switch.
- Router/Controller
 - Communicates with Assembly/Trigger Processor (ATP).
 - Provides fragment synchronization checking (?)
 - Receives destination requests from sub-event buffers.
 - Returns destination ATP to sub-event buffers.
 - Provides control/monitoring of sub-event buffers/switch.
- Switch
 - Receives data on N inputs (input \rightarrow sub-event buffer).
 - Routes data to M(=N) outputs (output \rightarrow Assembly/trigger processor.)
- (name?) Assembly/Trigger processor
 - Receives data from switch.
 - Removes redundant/unnecessary framing.
 - Performs validity checks
 - Builds Pointer banks.
 - Runs level-(?) trigger algorithms.
 - Transfers event to ONCS.

The PHENIX Event Builder – Sub-event Buffer (SEB)

Major SEB Functions:

- Receive event fragments from DCM's.
- Buffer input to switch.
- Perform data integrity check (at some unspecified level).
- Determine/obtain event fragment destination.
- Send event fragments to switch.

B.A. Cole

January 10, 1997

The PHENIX Event Builder – Switch input rates

Available/standard transfer rates (< Gigabit)

- OC-1 52 Mbit/s
- 100BaseT Ethernet 100 Mbit/s
- ATM UNI standard 100 Mbit/s
- OC-3 155 Mbit/s
- OC-12 622 Mbit/s
- Others (?)

At 500 Mbyte/s event-building rate (neglecting overhead)

- 77 inputs at OC-1.
- 40 inputs at 100 Mbit.
- 26 inputs at OC-3.
- 7 inputs at OC-12.

At 2 Gbyte/s event-building rate (neglecting overhead)

- 307 inputs at OC-1.
- 160 inputs at 100 Mbit.
- 103 inputs at OC-3.
- 26 inputs at OC-12.

Comments

- DCM outputs at 50 Mbyte/s at full bandwidth \rightarrow OC-12.
- Switch size becomes unwieldy for < OC-3.
- Ultimately, probably want to use OC-12 or greater.
- Cost of OC-12 currently probably too high.
- OC-3 or 100 Mbit initially OK.
- How to provide easy upgrade path?

Event Builder - Switch technology choice

Considerations

- Intrinsic topology (e.g. LAN, Switch, HUB, Ring ...)
- Switch development.
- Standard link speeds.
- Link cost.
- Interface cost.
- Ease of use.
- Industry usage.
- Technology maturity.

Possible Technologies

- ATM
 - + Intrinsically point→point, Switch topology.
 - + Gigabit switching speeds currently attainable.
 - + Very high link speeds.
 - + Heavy industry emphasis (Broadband ISDN)
 - Link cost currently high.
 - ? Ease of use ?
 - Immature technology standards still developing.
- Fiber-channel
 - + Intrinsically point→point, Switch topology.
 - + Very high link speeds.
 - + Mature technology.
 - Little industry implementation.
 - ? Link cost ?
 - ? Ease of use?
 - ? Switch development ?

Event Builder - Switch technology choice (cont.)

Possible Technologies (cont.)

- 100-BaseT (excluding 100-BaseT-VGany)
 - LAN Topology, point-to-point usage possible.
 - Slow link speeds (100 MBit/s max.)
 - ? Switch speeds?
 - + Possibly heavy industry usage.
 - + Low Link cost.
 - ? Should be easy to use but for our application ?
- Custom Switch using Columbia QCD Nodes
 - + Can make specific to desired topology.
 - Low link speeds.
 - Custom technology.
 - + Low Link cost.
 - Ease of use requires top to bottom development.
 - -? "industry" usage at Columbia
- Cross-bar
 - + Most natural switch technology for event-builder.
 - ? Link speeds?
 - + Switch speed essentially irrelevant.
 - Industry cross-bar switches available, custom boards required.
 - + Low link cost.
 - Ease of use requires substantial development.
- Frame-relay (I am ignorant)

Event Builder - Switch technology decision

Current Status

- Two opens under serious consideration:
 - Top candidate ATM.
 - Potential alternative fast ethernet.
- How to proceed?
- Vigorously pursue ATM
- Perform some tests of fast ethernet.
- Research the market changing rapidly.
- Make event-builder design modular.

Sources of expertise

- RD-31, built working prototype ATM event-builder.
- MIT CDF group (Paris Sphicas et al.), currently running 2x2 switch.
- CEBAF experiment (?) using ATM event-builder.
- Industry (BayNetworks, Fore, IBM, HP ...).

Schedule

- I will be visiting RD-31, MIT group, BayNetworks, ... over next 2 months.
- RD-31 (Saclay group) has explicit proposal for participating.
- Have Nevis (and ONCS?) participants attend formal training (?)
- Major decisions/milestones
 - Technology choice (ATM vs Ethernet) June 1.
 - Hardware vendor(s) June 1.
 - Connect (4?) processors through switch Sep 1.
 - Make minimal SEB+switch+ATP system functional Jan 1, 1998.

The PHENIX Event Builder – Buffering

Buffering requirements

- Actual requirements at sub-event buffer and ATP's unknown.
- Requires study of switch performance and trigger algorithms.
- Assume central Au-Au has twice current (old) average event size 400 kbyte.
- Educated guess Sub-event buffers
 - Worst-case (?), on-average SEB sees 1/10 of full event size (40 kbyte)
 - Suppose we want 20-event deep buffer.
 - Need 2 Mbyte buffer clearly not a problem.
 - Necessary but not sufficient need to be able to hold non-zero supressed event.

• ATP buffering

- Suppose 4 Mbyte available per node.
- 10 event-deep buffering per node.
- Likely to have 50 nodes \rightarrow 500 event buffering capacity.
- Even with poor utilization this should be sufficient.

The PHENIX Event Builder – Buffering

Where to buffer?

- (DCM output ports)
- Sub-event buffers
 - Absorbs fluctuations in front of switch.
 - Allows control of data rate into switch.
 - Back-pressure exerted on DCM outputs.
- Assembly/Trigger processors.
 - Use memory in ATP's to absorb processing rate fluctuations.
 - Distributed buffering system no "clogging" by full buffers.
 - Back-pressure (re-direction) exerted through router.
- OR Do we need buffers between Switch/ATP's?
 - In principle not necessary switches sufficient.
 - Add significant cost (or custom hardware).
 - + Buffers allow ATP's to be decoupled from switching.
 - + Buffers reduce memory needed in ATP's.
 - + Buffers provide more local routing of events.

The PHENIX Event Builder – Routing Schemes

Level-1 determined routing (deprecated)

- Determine event destination at Level-1.
- For a given run allocate ATP nodes per partition.
- Use pre-determined scheduling algorithm.
- + Simple, deterministic algorithm.
 - Non-adaptable to congestion, ATP failure.
 - Very un-modular.

Deterministic Switch router

- Route determined at sub-event buffer .
- Deterministic algorithm using pre-allocated nodes per partition.
- + Simple algorithm posibly first implemented.
- + Very modular, only router and switch knows about route addressing.
 - Non-adaptable to congestion, failure.
 - Static allocation of nodes may not be optimal.

Adaptable Switch router

- Route determined at sub-event buffer .
- Feedback from ATP's used to make routing decision.
- Many possible ways to implement.
- + Very modular, only router and switch knows about route addressing.
- + Adaptable to congestion, failure.
- + Provides dynamic re-allocation of nodes.
 - More complicated algorithm (feedback problems ?)
 - Requires communication with ATPs.

The PHENIX Event Builder – Router Implementation

Issues

- SEB \leftrightarrow Router connection must have small ($< 5 10 \mu s$) latency.
- Router must be able to address all SEB's simultaneously (broadcast?)
- Communication with router should be robust use simple protocal.
- Communication with router should be unaffected by data rate (?)

How to connect router to SEB's?

- Have router, SEB's reside in VME.
- Connect SEB's, router with cable bus/LAN.
- Connect SEB's, router using ATM but external to data switch.
- Connect SEB's, router through data switch.

Possible routing/data integrity verification algorithms

- Minimal interference
 - First fragment for (partition, event) iniates routing decision.
 - Decision does not incorporate event size.
 - Result broadcasted to all SEB's.
 - All fragments report to router.
 - No integrity checking.
- Maximal interference
 - Router waits for all fragments.
 - Router makes decision (using event size?).
 - Result broadcasted to relevant SEB's.
 - Events with missing fragments marked/dropped.
- Intermediate solution
 - All fragments report to router.
 - Router makes decision on first fragment.
 - Broadcasts result to SEB's.
 - Forwards fragment list/expected event size to ATP.

Event Builder - Level-2.5/ONCS Interface

Previous Discussions/Decisions

- Level-2.5/OCS Interface resides in Level-2.5 processors.
- Accepted event passed to ONCS interface code.
- Event allowed to be passed in non-contiguous fragments.
- No significant re-formatting done in Level-2.5 processor.

Implications/Considerations

- Desire zero (minimal)-copy transfer from input-output.
- Data altered mainly through framing removal and pointer bank, trigger primitive addition.
- Assembly/trigger processing/ONCS interface code share memory.
- Need appropriate memory management algorithm.
- How to handle multiple tasks in same processor?

Control/Operation

- How to provide feedback to router?
- Can one processor handle multiple partitions?
- How to decide when received event is complete?
- Must event ordering be maintained?
- Time-out mechanism needed for trigger calculation?
- How to prevent memory lock-up: trigger requires more space for output than available, processor stuck.

Sub-event Buffer (SEB) – Attack Plan

Requirements

- Proto-type of SEB available for Fall Sector test.
- Same design useful for Phenix running without major mods.
- SEB design satisfy requirements for first (2?) years Phenix operation.
- SEB design must accommodate Switch technology decision.

Division of reponsibilities

- BNL Data input
 - Finalize DCM output protocal Nevis/DCM, John.
 - Design/construct DCM \rightarrow PCI interface **John**.
 - Provide DCM \rightarrow PCI driver **John**.
 - Provide Buffer reading/management software **ONCS**.
 - Provide control interface to DCM \rightarrow PCI interface **ONCS**.
 - Provide control interface to buffer manager **ONCS**.
- Nevis Data output
 - Provide switch network interfcace card (NIC) **Nevis/Evb**.
 - Provide Switch NIC drivers Nevis/Evb.
 - Provide fragment routing/control software **Nevis/Evb**.
 - Provide control interface to fragment routing/control Nevis/Evb.
 - Provide control interface to switch NIC Nevis/Evb.
- Joint Hardware/Operating system decision.
- ONCS/Event-builder interface takes place in buffer manager.

Schedule

Task	Target Date
Finalize DCM output protocol	Jan. 31 (?)
Choose initial hardware	Feb. 11
Choose operating system	Feb. 11
Produce prototype DCM \rightarrow PCI interface	Summer
Write DCM \rightarrow PCI interface device driver	Summer
Decide switch network technology	Jun 1 (?)
Obtain switch network interface	Jun 1 (?)
Implement switch NIC driver	Jul 1 (?)
Implement CORBA interfaces	?
Test Seb throughput	Sep 1 (?)

Event Builder - Manpower

Task Summary

- Output half of SEB's.
- Switch implementation, control, ...
- Router implementation.
- Input half of ATP's.
- Control interfaces.
- Test, monitoring system.

Manpower situation at Nevis

- Currently have available/expect
 - Myself
 - Bill
 - Jamie Nagle
 - Another post-doc
 - 2 graduate students over summer
- Clearly not enough!
- What do I think we need (in addition to above)?
 - Additional engineering support.
 - Additional post-doc?

Other sources of manpwer/support

- RD-31
- BNL (ONCS)
- Industry (consulting?)
- Columbia/other computer science (?).